資料介紹
1、數(shù)字助聽器開拓是必然的技術支持
助聽器的設計具有嚴格的技術要求。助聽器必須足夠小的體積(以便置于人耳之中或其后部)、極低的運行功耗且不得引入噪聲或失真。為滿足這些要求,現(xiàn)有的助聽器件消耗的電流低于1mA,工作電壓為1V,并占用不到 的硅片面積(通常這意味著兩個或三個元件需要彼此堆疊放置)。
典型的模擬助聽器由具有非線性輸入/輸出功能以及頻率相關增益的放大器所組成。但是,與數(shù)字處理相比,這種模擬處理的缺點在于其依賴定制電路、不具備可編程性且成本較高。相比于同類模擬器件,近來的數(shù)字器件已經在器件成本和功耗方面有所改進。數(shù)字器件具有的最大優(yōu)點是其處理功率和可編程性的改善,它使得設計能夠針對特定的聽力受損情況和環(huán)境對助聽器進行客戶化設計??梢圆捎幂^為復雜的處理方法(而非簡單的聲音放大和可調頻率補償)來使傳送到受損人耳的聲音質量有所改善。但是,這種方案的實現(xiàn)需要仰仗DSP所具有的復雜處理能力。
2、 聽力損失的分類與解決
聽力損失通??煞譃閮深悾杭磦鲗吐犃p失和感覺神經型聽力損失(SNHL)。當通過患者外耳或中耳的聲音傳送異常時會發(fā)生傳導型聽力損失,而SNHL則發(fā)生在耳蝸中的感覺細胞或聽覺系統(tǒng)中更高級的神經機理出現(xiàn)故障的場合。
2.1 傳導型聽力損失的解決-聲音進行放大
傳導型聽力損失當發(fā)生傳導型聽力損失時,聲音不能通過中耳或外耳的進行正確的傳導。由于聲音衰減主要是因傳導損失所致,因此對聲音進行放大是恢復接近正常聽力所必不可少的。傳統(tǒng)的模擬助聽器無需特殊的信號處理就能發(fā)揮很好的作用。但是,在那些具有某種程度的聽力障礙的患者中,只有5%是純粹由傳導型聽力損失所造成的。
2.2 感覺神經型聽力損失(SNHL) 的解決
SNHL包括因器官老化而引起的聽力損失、噪聲引發(fā)的聽力損失以及由損害聽力系統(tǒng)的藥物所導致的聽力損失。多數(shù)類型的SNHL似乎是由耳蝸功能失效引起的。SNHL被認為是由于內耳絨毛細胞和/或外耳絨毛細胞受損引起的。但是潛在的生理學病因是復雜的,不同的人將表現(xiàn)出不同的病狀,這意味著聽力圖相同的患者其聽力損失情況未必相同。而且,在不同的頻率范圍內,患者聽力受損的情形甚至也有可能存在差異。
SNHL的影響通常會導致某些頻率范圍內的輸入信號缺損、靈敏度嚴重不足以及聽覺濾波器濾波范圍變大等問題。這些影響反過來又會大大影響患者對聲音的感覺。與聽力正常的人相比,SNHL患者最有可能遇到的問題就是需要加大音量(即患者的舒適聆聽電平范圍與正常值相比受到壓縮)以及頻率分辨率降低。聲音感覺方面的這些改變會顯著影響聽者對語音的理解能力。
由于SNHL不僅僅是聲音傳輸?shù)膯栴},而實際上是聲音處理的問題,因此這種損失不大可能通過簡單的放大來彌補-把失真的聲音放大并不會使其變得更加清晰。所以,幫助SNHL患者的一種有效途徑或許是通過信號的預處理來對合成音調頻譜進行改善的方法來補償聽力損失。
不同表現(xiàn)形式的SNHL不大可能采用一種相同的最佳處理方法來補救。對聲音進行處理能夠使語音變得更加清晰。但是,最佳處理算法會因人而異,而且,即使是同一個人,由于所處聆聽環(huán)境(比如既有安靜的房間也有噪雜的運動場)的不同,處理算法甚至也有可能改變。要想適應這些差異,關鍵在于助聽器的靈活性。
2.3 傳統(tǒng)助聽器組成及功能
傳統(tǒng)助聽器一直采用的是裝在與最終用戶相配的定制耳模內的放大器。助聽器系統(tǒng)包括傳聲器、放大器、鋅-空氣電池和接收器/揚聲器。大多數(shù)此類放大器均采用了某種用于對增大的音量進行補償?shù)膲嚎s函數(shù)(基本上是非線性輸入/輸出關系)。此外,不同頻段中的增益是可以調節(jié)的,且頻段的數(shù)量各不相同,但通常為兩個或三個。很多最新型的助聽器具有數(shù)字可編程性,這意味著盡管它們采用模擬信號處理,但其處理則受控于可由聽覺病矯治專家進行調節(jié)的數(shù)字參數(shù)。此外,一些模擬助聽器具有幾套“程序”(即幾組參數(shù)),以適應不同的聆聽環(huán)境。
3、基于DSP的數(shù)字助聽器
3.1 先述用ASIC(專用集成電路)制作的數(shù)字助聽器
市面上的一些數(shù)字助聽器是具有可編程系數(shù)的ASIC。這些ASIC能夠提供典型模擬器件所無法提供的幾套算法和多個頻段。例如,數(shù)字助聽器具有以下功能組合:2-14個具有可調交叉頻率的頻段、傳聲器、用于定向聆聽的對偶傳聲器、背景噪聲抑制、自動增益控制(AGC)、語音增強、反饋抑制和高響度保護??傊瑪?shù)字助聽器能夠處理的數(shù)量是令人吃驚的,尤其在與模擬助聽器所采用的傳統(tǒng)處理相比較時更是如此。
3.2 基于DSP的數(shù)字助聽器組成與功能
基于DSP的助聽器能夠實現(xiàn)軟件控制功能的擴展,從而包括頻率整形、反饋抑制、噪聲抑制、雙耳處理、耳廓和耳道濾波、混響抑制并備有用于接收來自數(shù)字電話、電視機或其他音頻設備的直接數(shù)字輸入的接口。
可編程DSP還意味著無需改變硬件即可對助聽器的算法及特性進行客戶化設計或變更。助聽器從業(yè)人員可以采用可行的算法來進行近乎實時的成本效益型試驗。甚至還有可能具備可由用戶選擇的程序,以便在惡劣的聆聽場合切換到精細處理的聲音,或在安靜環(huán)境下切換回傳統(tǒng)的、失真較低的聲音。
3.3 DSP的數(shù)字助聽器組成與技術支持

圖1 基于DSP的數(shù)字助聽器組成框圖
DSP的數(shù)字助聽器組成方框如圖1所示,它顯示出基于DSP的數(shù)字助聽器的組成要素。一個典型的數(shù)字助聽器由三個彼此堆疊的半導體硅片所組成:即EEPROM或非易失性存儲器、數(shù)字器件和模擬器件。近期技術的發(fā)展使得這些模塊可被集成到兩塊甚至一塊半導體硅片中。由于電池電壓的范圍在7.35V-0.9V之間,因此這些器件的工作電壓被設計為0.9V。有些實現(xiàn)方案采用了電源管理來對電池電壓實施監(jiān)控,當電池電量低時則向用戶報警,并在電池電壓降得過低時緩慢關閉系統(tǒng)。模擬器件通常包括∑△型模擬-數(shù)字轉換器(ADC)、具有壓縮輸入限制功能的傳聲器前置放大器、遙控數(shù)字解碼器、時鐘振蕩器以及穩(wěn)壓器。∑△型ADC的典型頻率范圍為20kHz,分辨率為16位(線性分辨率為14位)。數(shù)字器件則包括DSP、邏輯支持功能、程序接口以及輸出級。輸出級通常是全數(shù)字式的,采用脈寬調制(PWM)輸出和D類放大器,并運用揚聲器阻抗來執(zhí)行模擬—數(shù)字轉換。
助聽器的設計具有嚴格的技術要求。助聽器必須足夠小的體積(以便置于人耳之中或其后部)、極低的運行功耗且不得引入噪聲或失真。為滿足這些要求,現(xiàn)有的助聽器件消耗的電流低于1mA,工作電壓為1V,并占用不到 的硅片面積(通常這意味著兩個或三個元件需要彼此堆疊放置)。
典型的模擬助聽器由具有非線性輸入/輸出功能以及頻率相關增益的放大器所組成。但是,與數(shù)字處理相比,這種模擬處理的缺點在于其依賴定制電路、不具備可編程性且成本較高。相比于同類模擬器件,近來的數(shù)字器件已經在器件成本和功耗方面有所改進。數(shù)字器件具有的最大優(yōu)點是其處理功率和可編程性的改善,它使得設計能夠針對特定的聽力受損情況和環(huán)境對助聽器進行客戶化設計??梢圆捎幂^為復雜的處理方法(而非簡單的聲音放大和可調頻率補償)來使傳送到受損人耳的聲音質量有所改善。但是,這種方案的實現(xiàn)需要仰仗DSP所具有的復雜處理能力。
2、 聽力損失的分類與解決
聽力損失通??煞譃閮深悾杭磦鲗吐犃p失和感覺神經型聽力損失(SNHL)。當通過患者外耳或中耳的聲音傳送異常時會發(fā)生傳導型聽力損失,而SNHL則發(fā)生在耳蝸中的感覺細胞或聽覺系統(tǒng)中更高級的神經機理出現(xiàn)故障的場合。
2.1 傳導型聽力損失的解決-聲音進行放大
傳導型聽力損失當發(fā)生傳導型聽力損失時,聲音不能通過中耳或外耳的進行正確的傳導。由于聲音衰減主要是因傳導損失所致,因此對聲音進行放大是恢復接近正常聽力所必不可少的。傳統(tǒng)的模擬助聽器無需特殊的信號處理就能發(fā)揮很好的作用。但是,在那些具有某種程度的聽力障礙的患者中,只有5%是純粹由傳導型聽力損失所造成的。
2.2 感覺神經型聽力損失(SNHL) 的解決
SNHL包括因器官老化而引起的聽力損失、噪聲引發(fā)的聽力損失以及由損害聽力系統(tǒng)的藥物所導致的聽力損失。多數(shù)類型的SNHL似乎是由耳蝸功能失效引起的。SNHL被認為是由于內耳絨毛細胞和/或外耳絨毛細胞受損引起的。但是潛在的生理學病因是復雜的,不同的人將表現(xiàn)出不同的病狀,這意味著聽力圖相同的患者其聽力損失情況未必相同。而且,在不同的頻率范圍內,患者聽力受損的情形甚至也有可能存在差異。
SNHL的影響通常會導致某些頻率范圍內的輸入信號缺損、靈敏度嚴重不足以及聽覺濾波器濾波范圍變大等問題。這些影響反過來又會大大影響患者對聲音的感覺。與聽力正常的人相比,SNHL患者最有可能遇到的問題就是需要加大音量(即患者的舒適聆聽電平范圍與正常值相比受到壓縮)以及頻率分辨率降低。聲音感覺方面的這些改變會顯著影響聽者對語音的理解能力。
由于SNHL不僅僅是聲音傳輸?shù)膯栴},而實際上是聲音處理的問題,因此這種損失不大可能通過簡單的放大來彌補-把失真的聲音放大并不會使其變得更加清晰。所以,幫助SNHL患者的一種有效途徑或許是通過信號的預處理來對合成音調頻譜進行改善的方法來補償聽力損失。
不同表現(xiàn)形式的SNHL不大可能采用一種相同的最佳處理方法來補救。對聲音進行處理能夠使語音變得更加清晰。但是,最佳處理算法會因人而異,而且,即使是同一個人,由于所處聆聽環(huán)境(比如既有安靜的房間也有噪雜的運動場)的不同,處理算法甚至也有可能改變。要想適應這些差異,關鍵在于助聽器的靈活性。
2.3 傳統(tǒng)助聽器組成及功能
傳統(tǒng)助聽器一直采用的是裝在與最終用戶相配的定制耳模內的放大器。助聽器系統(tǒng)包括傳聲器、放大器、鋅-空氣電池和接收器/揚聲器。大多數(shù)此類放大器均采用了某種用于對增大的音量進行補償?shù)膲嚎s函數(shù)(基本上是非線性輸入/輸出關系)。此外,不同頻段中的增益是可以調節(jié)的,且頻段的數(shù)量各不相同,但通常為兩個或三個。很多最新型的助聽器具有數(shù)字可編程性,這意味著盡管它們采用模擬信號處理,但其處理則受控于可由聽覺病矯治專家進行調節(jié)的數(shù)字參數(shù)。此外,一些模擬助聽器具有幾套“程序”(即幾組參數(shù)),以適應不同的聆聽環(huán)境。
3、基于DSP的數(shù)字助聽器
3.1 先述用ASIC(專用集成電路)制作的數(shù)字助聽器
市面上的一些數(shù)字助聽器是具有可編程系數(shù)的ASIC。這些ASIC能夠提供典型模擬器件所無法提供的幾套算法和多個頻段。例如,數(shù)字助聽器具有以下功能組合:2-14個具有可調交叉頻率的頻段、傳聲器、用于定向聆聽的對偶傳聲器、背景噪聲抑制、自動增益控制(AGC)、語音增強、反饋抑制和高響度保護??傊瑪?shù)字助聽器能夠處理的數(shù)量是令人吃驚的,尤其在與模擬助聽器所采用的傳統(tǒng)處理相比較時更是如此。
3.2 基于DSP的數(shù)字助聽器組成與功能
基于DSP的助聽器能夠實現(xiàn)軟件控制功能的擴展,從而包括頻率整形、反饋抑制、噪聲抑制、雙耳處理、耳廓和耳道濾波、混響抑制并備有用于接收來自數(shù)字電話、電視機或其他音頻設備的直接數(shù)字輸入的接口。
可編程DSP還意味著無需改變硬件即可對助聽器的算法及特性進行客戶化設計或變更。助聽器從業(yè)人員可以采用可行的算法來進行近乎實時的成本效益型試驗。甚至還有可能具備可由用戶選擇的程序,以便在惡劣的聆聽場合切換到精細處理的聲音,或在安靜環(huán)境下切換回傳統(tǒng)的、失真較低的聲音。
3.3 DSP的數(shù)字助聽器組成與技術支持

圖1 基于DSP的數(shù)字助聽器組成框圖
DSP的數(shù)字助聽器組成方框如圖1所示,它顯示出基于DSP的數(shù)字助聽器的組成要素。一個典型的數(shù)字助聽器由三個彼此堆疊的半導體硅片所組成:即EEPROM或非易失性存儲器、數(shù)字器件和模擬器件。近期技術的發(fā)展使得這些模塊可被集成到兩塊甚至一塊半導體硅片中。由于電池電壓的范圍在7.35V-0.9V之間,因此這些器件的工作電壓被設計為0.9V。有些實現(xiàn)方案采用了電源管理來對電池電壓實施監(jiān)控,當電池電量低時則向用戶報警,并在電池電壓降得過低時緩慢關閉系統(tǒng)。模擬器件通常包括∑△型模擬-數(shù)字轉換器(ADC)、具有壓縮輸入限制功能的傳聲器前置放大器、遙控數(shù)字解碼器、時鐘振蕩器以及穩(wěn)壓器。∑△型ADC的典型頻率范圍為20kHz,分辨率為16位(線性分辨率為14位)。數(shù)字器件則包括DSP、邏輯支持功能、程序接口以及輸出級。輸出級通常是全數(shù)字式的,采用脈寬調制(PWM)輸出和D類放大器,并運用揚聲器阻抗來執(zhí)行模擬—數(shù)字轉換。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- HPM10——電源管理IC助聽器 17次下載
- SA3229低成本耳背式BTE助聽器的數(shù)據(jù)手冊免費下載 24次下載
- 新型低功耗雙耳可穿戴式數(shù)字助聽器平臺的研制的詳細資料概述 6次下載
- 數(shù)字助聽器系統(tǒng)中中文語音處理的原理及其技術解析 9次下載
- 基于DSP的數(shù)字助聽器設計方案 8次下載
- 助聽器R3110設計 46次下載
- 基于sa3291的無線DSP助聽器系統(tǒng)設計 12次下載
- TI數(shù)字助聽器設計考慮 18次下載
- 助聽器介紹及其設計 60次下載
- 美信(maxim)助聽器解決方案(英文) 121次下載
- 模擬助聽器與數(shù)字助聽器的區(qū)別 244次下載
- 助聽器介紹及其設計要點 0次下載
- 集成助聽器電路及制作
- 耳聾助聽器電路及制作
- 袖珍耳聾助聽器電路及制作
- 助聽器電路圖分享 助聽器的工作原理和結構 2263次閱讀
- 深度學習與傳統(tǒng)機器學習的對比 1477次閱讀
- 助聽器簡介和重要的設計注意事項 1624次閱讀
- 一個電子助聽器電路圖 6557次閱讀
- DSP芯片與單片機之間的區(qū)別及應用對比分析 8814次閱讀
- 戴助聽器的副作用 5508次閱讀
- 可穿戴設備在增強音頻類應用所取得的發(fā)展 3950次閱讀
- 基于TDA2822制作的助聽器 8379次閱讀
- Ameya360助聽器解決方案概述 5128次閱讀
- 先進DSP技術在助聽器中的應用 4654次閱讀
- DSP是什么?詳解DSP又稱數(shù)字信號處理器 4.8w次閱讀
- 助聽器電路分析 7024次閱讀
- 基于DSP的雙通道數(shù)字存儲示波器 3694次閱讀
- 如何看懂電路圖(三):放大電路設計詳解 11.7w次閱讀
- 基于TMS320VC5416DSP的數(shù)字助聽器設計 4264次閱讀
下載排行
本周
- 1DC電源插座圖紙
- 0.67 MB | 2次下載 | 免費
- 2AN158 GD32VW553 Wi-Fi開發(fā)指南
- 1.51MB | 2次下載 | 免費
- 3AN148 GD32VW553射頻硬件開發(fā)指南
- 2.07MB | 1次下載 | 免費
- 4AN111-LTC3219用戶指南
- 84.32KB | 次下載 | 免費
- 5AN153-用于電源系統(tǒng)管理的Linduino
- 1.38MB | 次下載 | 免費
- 6AN-283: Σ-Δ型ADC和DAC[中文版]
- 677.86KB | 次下載 | 免費
- 7SM2018E 支持可控硅調光線性恒流控制芯片
- 402.24 KB | 次下載 | 免費
- 8AN-1308: 電流檢測放大器共模階躍響應
- 545.42KB | 次下載 | 免費
本月
- 1ADI高性能電源管理解決方案
- 2.43 MB | 450次下載 | 免費
- 2免費開源CC3D飛控資料(電路圖&PCB源文件、BOM、
- 5.67 MB | 138次下載 | 1 積分
- 3基于STM32單片機智能手環(huán)心率計步器體溫顯示設計
- 0.10 MB | 130次下載 | 免費
- 4使用單片機實現(xiàn)七人表決器的程序和仿真資料免費下載
- 2.96 MB | 44次下載 | 免費
- 53314A函數(shù)發(fā)生器維修手冊
- 16.30 MB | 31次下載 | 免費
- 6美的電磁爐維修手冊大全
- 1.56 MB | 24次下載 | 5 積分
- 7如何正確測試電源的紋波
- 0.36 MB | 17次下載 | 免費
- 8感應筆電路圖
- 0.06 MB | 10次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935121次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
- 1.48MB | 420062次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233088次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費下載
- 340992 | 191367次下載 | 10 積分
- 5十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183335次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81581次下載 | 10 積分
- 7Keil工具MDK-Arm免費下載
- 0.02 MB | 73810次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65988次下載 | 10 積分
評論