亚洲av成人精品日韩一区,97久久久精品综合88久久,玩弄japan白嫩少妇hd,亚洲av片不卡无码久久,玩弄人妻少妇500系列

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

OpenCV使用深度學習做邊緣檢測的流程

新機器視覺 ? 來源:AI算法與圖像處理 ? 作者:AI算法與圖像處理 ? 2021-05-08 11:05 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導讀

分析了Canny的優(yōu)劣,并給出了OpenCV使用深度學習做邊緣檢測的流程。

在這篇文章中,我們將學習如何在OpenCV中使用基于深度學習的邊緣檢測,它比目前流行的canny邊緣檢測器更精確。邊緣檢測在許多用例中是有用的,如視覺顯著性檢測,目標檢測,跟蹤和運動分析,結(jié)構(gòu)從運動,3D重建,自動駕駛,圖像到文本分析等等。

什么是邊緣檢測?

邊緣檢測是計算機視覺中一個非常古老的問題,它涉及到檢測圖像中的邊緣來確定目標的邊界,從而分離感興趣的目標。最流行的邊緣檢測技術(shù)之一是Canny邊緣檢測,它已經(jīng)成為大多數(shù)計算機視覺研究人員和實踐者的首選方法。讓我們快速看一下Canny邊緣檢測。

Canny邊緣檢測算法

1983年,John Canny在麻省理工學院發(fā)明了Canny邊緣檢測。它將邊緣檢測視為一個信號處理問題。其核心思想是,如果你觀察圖像中每個像素的強度變化,它在邊緣的時候非常高。

在下面這張簡單的圖片中,強度變化只發(fā)生在邊界上。所以,你可以很容易地通過觀察像素強度的變化來識別邊緣。

現(xiàn)在,看下這張圖片。強度不是恒定的,但強度的變化率在邊緣處最高。(微積分復習:變化率可以用一階導數(shù)(梯度)來計算。)

Canny邊緣檢測器通過4步來識別邊緣:

去噪:因為這種方法依賴于強度的突然變化,如果圖像有很多隨機噪聲,那么會將噪聲作為邊緣。所以,使用5×5的高斯濾波器平滑你的圖像是一個非常好的主意。

梯度計算:下一步,我們計算圖像中每個像素的強度的梯度(強度變化率)。我們也計算梯度的方向。

d1e241c6-aef2-11eb-bf61-12bb97331649.png

梯度方向垂直于邊緣,它被映射到四個方向中的一個(水平、垂直和兩個對角線方向)。

非極大值抑制:現(xiàn)在,我們想刪除不是邊緣的像素(設(shè)置它們的值為0)。你可能會說,我們可以簡單地選取梯度值最高的像素,這些就是我們的邊。然而,在真實的圖像中,梯度不是簡單地在只一個像素處達到峰值,而是在臨近邊緣的像素處都非常高。因此我們在梯度方向上取3×3附近的局部最大值。

d206e58a-aef2-11eb-bf61-12bb97331649.png

遲滯閾值化:在下一步中,我們需要決定一個梯度的閾值,低于這個閾值所有的像素都將被抑制(設(shè)置為0)。而Canny邊緣檢測器則采用遲滯閾值法。遲滯閾值法是一種非常簡單而有效的方法。我們使用兩個閾值來代替只用一個閾值:

高閾值 = 選擇一個非常高的值,這樣任何梯度值高于這個值的像素都肯定是一個邊緣。

低閾值 = 選擇一個非常低的值,任何梯度值低于該值的像素絕對不是邊緣。

在這兩個閾值之間有梯度的像素會被檢查,如果它們和邊緣相連,就會留下,否則就會去掉。

遲滯閾值化

Canny 邊緣檢測的問題:

由于Canny邊緣檢測器只關(guān)注局部變化,沒有語義(理解圖像的內(nèi)容)理解,精度有限(很多時候是這樣)。

Canny邊緣檢測器在這種情況下會失敗,因為沒有理解圖像的上下文

語義理解對于邊緣檢測是至關(guān)重要的,這就是為什么使用機器學習或深度學習的基于學習的檢測器比canny邊緣檢測器產(chǎn)生更好的結(jié)果。

OpenCV中基于深度學習的邊緣檢測

OpenCV在其全新的DNN模塊中集成了基于深度學習的邊緣檢測技術(shù)。你需要OpenCV 3.4.3或更高版本。這種技術(shù)被稱為整體嵌套邊緣檢測或HED,是一種基于學習的端到端邊緣檢測系統(tǒng),使用修剪過的類似vgg的卷積神經(jīng)網(wǎng)絡進行圖像到圖像的預測任務。

HED利用了中間層的輸出。之前的層的輸出稱為side output,將所有5個卷積層的輸出進行融合,生成最終的預測。由于在每一層生成的特征圖大小不同,它可以有效地以不同的尺度查看圖像。

網(wǎng)絡結(jié)構(gòu):整體嵌套邊緣檢測

HED方法不僅比其他基于深度學習的方法更準確,而且速度也比其他方法快得多。這就是為什么OpenCV決定將其集成到新的DNN模塊中。以下是這篇論文的結(jié)果:

d3af918e-aef2-11eb-bf61-12bb97331649.png

在OpenCV中訓練深度學習邊緣檢測的代碼

OpenCV使用的預訓練模型已經(jīng)在Caffe框架中訓練過了,可以這樣加載:

sh download_pretrained.sh

網(wǎng)絡中有一個crop層,默認是沒有實現(xiàn)的,所以我們需要自己實現(xiàn)一下。

class CropLayer(object):

def __init__(self, params, blobs):

self.xstart = 0

self.xend = 0

self.ystart = 0

self.yend = 0

# Our layer receives two inputs. We need to crop the first input blob

# to match a shape of the second one (keeping batch size and number of channels)

def getMemoryShapes(self, inputs):

inputShape, targetShape = inputs[0], inputs[1]

batchSize, numChannels = inputShape[0], inputShape[1]

height, width = targetShape[2], targetShape[3]

self.ystart = (inputShape[2] - targetShape[2]) // 2

self.xstart = (inputShape[3] - targetShape[3]) // 2

self.yend = self.ystart + height

self.xend = self.xstart + width

return [[batchSize, numChannels, height, width]]

def forward(self, inputs):

return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]]

現(xiàn)在,我們可以重載這個類,只需用一行代碼注冊該層。

cv.dnn_registerLayer(‘Crop’, CropLayer)

現(xiàn)在,我們準備構(gòu)建網(wǎng)絡圖并加載權(quán)重,這可以通過OpenCV的dnn.readNe函數(shù)。

net = cv.dnn.readNet(args.prototxt, args.caffemodel)

現(xiàn)在,下一步是批量加載圖像,并通過網(wǎng)絡運行它們。為此,我們使用cv2.dnn.blobFromImage方法。該方法從輸入圖像中創(chuàng)建四維blob。

blob = cv.dnn.blobFromImage(image, scalefactor, size, mean, swapRB, crop)

其中:

image:是我們想要發(fā)送給神經(jīng)網(wǎng)絡進行推理的輸入圖像。

scalefactor:圖像縮放常數(shù),很多時候我們需要把uint8的圖像除以255,這樣所有的像素都在0到1之間。默認值是1.0,不縮放。

size:輸出圖像的空間大小。它將等于后續(xù)神經(jīng)網(wǎng)絡作為blobFromImage輸出所需的輸入大小。

swapRB:布爾值,表示我們是否想在3通道圖像中交換第一個和最后一個通道。OpenCV默認圖像為BGR格式,但如果我們想將此順序轉(zhuǎn)換為RGB,我們可以將此標志設(shè)置為True,這也是默認值。

mean:為了進行歸一化,有時我們計算訓練數(shù)據(jù)集上的平均像素值,并在訓練過程中從每幅圖像中減去它。如果我們在訓練中做均值減法,那么我們必須在推理中應用它。這個平均值是一個對應于R, G, B通道的元組。例如Imagenet數(shù)據(jù)集的均值是R=103.93, G=116.77, B=123.68。如果我們使用swapRB=False,那么這個順序?qū)⑹牵˙, G, R)。

crop:布爾標志,表示我們是否想居中裁剪圖像。如果設(shè)置為True,則從中心裁剪輸入圖像時,較小的尺寸等于相應的尺寸,而其他尺寸等于或大于該尺寸。然而,如果我們將其設(shè)置為False,它將保留長寬比,只是將其調(diào)整為固定尺寸大小。

在我們這個場景下:

inp = cv.dnn.blobFromImage(frame, scalefactor=1.0, size=(args.width, args.height),

mean=(104.00698793, 116.66876762, 122.67891434), swapRB=False,

crop=False)

現(xiàn)在,我們只需要調(diào)用一下前向方法。

net.setInput(inp)

out = net.forward()

out = out[0, 0]

out = cv.resize(out, (frame.shape[1], frame.shape[0]))

out = 255 * out

out = out.astype(np.uint8)

out=cv.cvtColor(out,cv.COLOR_GRAY2BGR)

con=np.concatenate((frame,out),axis=1)

cv.imshow(kWinName,con)

原文標題:在OpenCV中基于深度學習的邊緣檢測

文章出處:【微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • OpenCV
    +關(guān)注

    關(guān)注

    32

    文章

    642

    瀏覽量

    42885
  • 深度學習
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122794

原文標題:在OpenCV中基于深度學習的邊緣檢測

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    【Milk-V Duo S 開發(fā)板免費體驗】SDK編譯、人臉檢測OpenCV測試

    檢測、OpenCV-mobile 庫的測試等相關(guān)流程。 Buildroot SDK Duo 系列開發(fā)板默認的 SDK 是基于 buildroot 構(gòu)建的,用來生成 Duo 的固件。 V2 版本 SDK
    發(fā)表于 07-11 13:48

    基于LockAI視覺識別模塊:C++輪廓檢測

    本文檔展示了如何使用 OpenCV 進行圖像處理和特征檢測,包括邊緣檢測、直線檢測、圓檢測以及多
    發(fā)表于 05-22 10:05

    行業(yè)首創(chuàng):基于深度學習視覺平臺的AI驅(qū)動輪胎檢測自動化

    全球領(lǐng)先的輪胎制造商 NEXEN TIRE 在其輪胎生產(chǎn)檢測過程中使用了基于友思特伙伴Neurocle開發(fā)的AI深度學習視覺平臺,實現(xiàn)缺陷檢測率高達99.96%,是該行業(yè)首個使用AI平
    的頭像 發(fā)表于 03-19 16:51 ?442次閱讀
    行業(yè)首創(chuàng):基于<b class='flag-5'>深度</b><b class='flag-5'>學習</b>視覺平臺的AI驅(qū)動輪胎<b class='flag-5'>檢測</b>自動化

    基于FPGA的圖像邊緣檢測設(shè)計

    今天給大俠帶來基于 FPGA 的圖像邊緣檢測設(shè)計,話不多說,上貨。 設(shè)計流程如下:mif文件的制作→?調(diào)用 ip 核生成rom以及仿真注意問題→?灰度處理→?均值濾波:重點是3*3 像素陣列的生成
    的頭像 發(fā)表于 02-10 11:30 ?670次閱讀
    基于FPGA的圖像<b class='flag-5'>邊緣</b><b class='flag-5'>檢測</b>設(shè)計

    邊緣設(shè)備上設(shè)計和部署深度神經(jīng)網(wǎng)絡的實用框架

    ???? 機器學習深度學習應用程序正越來越多地從云端轉(zhuǎn)移到靠近數(shù)據(jù)源頭的嵌入式設(shè)備。隨著邊緣計算市場的快速擴張,多種因素正在推動邊緣人工智
    的頭像 發(fā)表于 12-20 11:28 ?890次閱讀

    邊緣學習:降本增效,開啟物流新未來

    在當今數(shù)字化浪潮下,物流行業(yè)正經(jīng)歷著深刻變革。邊緣學習作為一項基于AI的創(chuàng)新技術(shù),已在物流領(lǐng)域嶄露頭角。它不僅能幫助物流企業(yè)應對突發(fā)公共衛(wèi)生事件帶來的挑戰(zhàn),還在包裹檢測、分類和流程問題
    的頭像 發(fā)表于 12-20 09:07 ?397次閱讀

    AI模型部署邊緣設(shè)備的奇妙之旅:目標檢測模型

    1、簡介 人工智能圖像識別是人工智能領(lǐng)域的一個重要分支,它涉及計算機視覺、深度學習、機器學習等多個領(lǐng)域的知識和技術(shù)。圖像識別主要是處理具有一定復雜性的信息。計算機采用與人類類似的圖像識別原理,即對
    發(fā)表于 12-19 14:33

    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署OpenCV

    、車輛和其他重要元素。 2 基礎(chǔ)知識 OpenCV 是一個開源的計算機視覺和機器學習軟件庫,廣泛用于圖像處理、視頻捕捉、物體檢測等領(lǐng)域。一些常用操作及其目的: 讀取圖片 使用 cv2.imread
    發(fā)表于 12-14 09:31

    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署OpenCV

    力的研究工具。在深度學習中,我們會經(jīng)常接觸到兩個名稱,圖像處理和計算機視覺,它們之間有什么區(qū)別呢?圖像處理(ImageProcessing)目的:圖像處理主要集中在
    的頭像 發(fā)表于 12-14 09:10 ?897次閱讀
    AI模型部署<b class='flag-5'>邊緣</b>設(shè)備的奇妙之旅:如何在<b class='flag-5'>邊緣</b>端部署<b class='flag-5'>OpenCV</b>

    如何用OpenCV的相機捕捉視頻進行人臉檢測--基于米爾NXP i.MX93開發(fā)板

    的是Haar特征人臉檢測,此外OpenCV中還集成了深度學習方法來實現(xiàn)人臉檢測。 【參考資料】 使用O
    發(fā)表于 11-15 17:58

    NPU在深度學習中的應用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學習作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡處理單元)是專門為深度學習
    的頭像 發(fā)表于 11-14 15:17 ?1907次閱讀

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發(fā)表于 10-27 11:13 ?1362次閱讀

    FPGA深度學習能走多遠?

    ,共同進步。 歡迎加入FPGA技術(shù)微信交流群14群! 交流問題(一) Q:FPGA深度學習能走多遠?現(xiàn)在用FPGA深度
    發(fā)表于 09-27 20:53

    QT5+OpenCV4搭建應用開發(fā)環(huán)境

    作為深度學習算法工程師,必須要掌握應用開發(fā)技能嗎?搞工程肯定是必須要會界面開發(fā),QT就是一個很不錯的選擇。本文以QT5.15 + OpenCV4.8 + OpenVINO2023為例,搭建應用開發(fā)環(huán)境,演示
    的頭像 發(fā)表于 07-23 11:23 ?1481次閱讀
    QT5+<b class='flag-5'>OpenCV</b>4搭建應用開發(fā)環(huán)境

    DSP國產(chǎn)教學實驗箱_實驗案例_操作教程:5-11 邊緣檢測

    一、實驗目的 學習Canny邊緣檢測的原理,掌握圖像的讀取方法,并實現(xiàn)邊緣檢測。 二、實驗原理 邊緣
    發(fā)表于 07-19 10:38